

Green Synthesis of Silver Nanoparticles from Phytochemicals of Medicinal Plants and their Cytotoxicity against Human Umbilical Vein Endothelial Cells

Narmadha B.*, Job Gopinath M. and Varshini Premakumari J.

Department of Zoology, Voorhees College, Thiruvaluvar University, Vellore 632001, Tamil Nadu, INDIA

*narmadha0512@gmail.com

Abstract

In the past few decades, green synthesized nanoparticles are being extensively studied for their biological potential and in treatment of variety of diseases. The current study was designed to evaluate the cytotoxic potential of silver nanoparticles (AgNPs) green synthesized with medicinal plants *Cissus quadrangularis*, *Catharanthus roseus*, *Acalypha indica* and *Coleus aromaticus* on immortalised Human Umbilical Vein Endothelial Cells (HUVEC) cell line. The aqueous extracts of the medicinal plants were used as reducing agents during the synthesis of AgNPs. The qualitative phytochemical analysis of the aqueous extracts denoted the presence of several bioactive compounds, including saponins, tannins, phenols, flavonoids and steroids in all four species. Phytochemicals such as flavonoid are the major constituents. Flavonoids are phytochemicals known for their anti-cancer, antioxidant, anti-inflammatory and cell-signalling regulatory properties.

It is found that flavonoid content in *C. quadrangularis* AgNPs was greater than other three plants at a value of 968.31mg/g (QCE). The synthesised nanoparticles were then characterised by Scanning electron microscope (SEM), X-ray diffraction (XRD), UV-vis spectrophotometer, Energy-dispersive X-ray spectroscopy EDAX and Fourier-transformed infrared spectroscopy (FT-IR). The synthesised nanoparticles were then cultured with the HUVEC cell line to assess their cytotoxic potential. The AgNPs produced considered cytotoxicity in the HUVEC cell line, however it was found that AgNPs synthesised with aqueous extract of *Cissus quadrangularis* produced the greatest cytotoxicity, with an IC₅₀ value of 28.689 µg/ml. The findings of the study suggest the anti-cancer potential of AgNPs green synthesized with *Cissus quadrangularis*.

Keyword: Green synthesis, *Cissus quadrangularis*, Nanoparticles, Anti-cancer, Cytotoxicity, HUVEC.

Introduction

All plants including fruits, vegetables, grains and legumes, produce phytochemicals. Phytochemicals such as

anthocyanidins, beta-carotene, catechins, carotenoids, flavonoids, isoflavones etc. are utilized to treat a variety of illnesses and have anti-inflammatory, anti-cancer and antioxidant properties. They also act as reducing agents. They assist in scavenging free radicals, which may harm DNA²³. Nanoscience is a valuable advancement that has the potential to bring unexpected transformations across various research fields and practical applications.

The past few decades have also seen the application of nanotechnology in a variety of industries including food, agriculture, healthcare and medicine¹⁸. Since the early 1900s, it has been recognised that plant extracts can reduce metal ions. In the past decades, there has been growing interest in using plants and their extracts to reduce metal salts to nanoparticles¹⁷. The use of plant-based systems for nanoparticle synthesis introduces an eco-friendly and sustainable alternative to conventional chemical methods¹⁷. Phytochemical-rich plant extracts provide intrinsic anti-cancer and anti-angiogenic properties, which, when integrated with nanoparticles, offer synergistic therapeutic potential¹⁶.

Unlike synthetic agents, these biogenic nanoparticles are biocompatible, reduce adverse effects and enhance drug delivery efficiency. By leveraging phytochemicals as stabilizing agents and reducing agents, use of phytochemicals established possibilities for the synthesis of non-toxic, environmentally conscious and sustainable phytochemical treated nanoparticles². Nanoparticles improve the pharmacokinetics and biodistribution of chemotherapeutics, enabling targeted delivery to tumour sites while minimizing systemic toxicity¹¹. Anti-cancer therapies have emerged as a pivotal component in oncological interventions, aiming to disrupt the vascular support system of tumours¹⁵. While conventional anti-cancer and anti-angiogenic drugs have shown promise, they are often limited by systemic toxicity, resistance and incomplete tumour suppression. These challenges necessitate the exploration of innovative, biocompatible and efficient alternatives²¹.

Doxorubicin, a widely used chemotherapeutic agent, demonstrates significant anti-cancer efficacy but is hindered by dose dependent cardiotoxicity and limited tumour specificity¹⁴. The current research explores at the phytochemical analysis of medicinal plants notably *Acalypha indica*, *Cissus quadrangularis*, *Coleus aromaticus*

and *Catharanthus roseus*. Silver nanoparticles are created via phytochemical extraction as a reducing agent which also has cytotoxic effects on HUVEC. Finally, a promising margin in the cytotoxic activity of cancer cells is provided by the photosynthetic AgNPs. The incorporation of plant extracts in nanoparticle synthesis not only enhances their therapeutic potential but also aligns with the growing demand for sustainable and non-toxic biomedical solutions. By targeting angiogenesis, this hybrid system aims to disrupt the tumour microenvironment, thereby inhibiting cancer growth and progression³².

In conclusion, the convergence of nanotechnology and plant-derived therapeutics offers a promising margin in anti-cancer research. This work contributes to the evolving paradigm of targeted, sustainable and effective cancer therapies, emphasizing the critical role in combating malignancies⁸.

Material and Methods

Collection and identification of plants: Four plants *Cissus quadrangularis*, *Acalypha indica*, *Catharanthus roseus*, *Coleus aromaticus* were collected in and around Tamil Nadu, India. The plant was identified and authenticated by Dr. M. Job Gopinath, Assistant Professor, Department of Zoology, Voorhees College (Affiliated to Thiruvalluvar University), Vellore 632001. Fresh plant material was washed 5 with water, air dried under shade and then blended to fine powder. The powder was stored in airtight containers for further use.

Extraction of plant for its phytochemicals: About 100 g dried samples were extracted in a Soxhlet extraction system (BUCHI Extraction System Model B-811) using water as solvent. The crude extract solutions obtained were then concentrated using a vacuum rotary evaporator or hot air oven (BUCHI Rotavapor Model R-144) at a temperature of 60°C or lower to remove the solvents. All extracts were then stored at room temperature before weighing gravimetrically to determine the yields.

The extraction yield was calculated using:

$$Y = W_f/W_i \times 100$$

where Y = Extraction yield, W_i = Initial weight of sample and W_f = Final weight after extraction.

Qualitative analysis: Qualitative analysis was done for analysing the presence of flavonoids, tannin, phenol, glycoside, saponin, terpenoids, alkaloids and steroids in the extract¹⁰.

Quantification of total flavonoid in plant extract: The plant extract was quantitatively estimated for the detection of total flavonoid²⁴ and phenol content¹⁹.

Synthesis silver nanoparticle using flavonoid rich fraction: For synthesis of silver nanoparticles, about 47.5 ml

of 10–3 M aqueous AgNO_3 (HiMedia, India) solution was taken in 100 mL beaker. 20 ml of aqueous plant extract(10mg/ml) was transferred dropwise to AgNO_3 solution. The mixture was then continuously stirred for 3 hours at 25 °C.

Fig. 1.1

Fig. 1.2

Fig. 1.3

Fig. 1.4

Figure 1: Plants used for NPs Synthesis
(1.1) *Cissus quadrangularis*, (1.2) *Acalypha indica*,
(1.3) *Catharanthus roseus*, (1.4) *Coleus aromaticus*

During the reaction progress, visual colour changes were monitored. The obtained solution was subjected to centrifugation (Remi R12C plus) at 4000 rpm for 20 min. The pellet present at the bottom was washed with 90% ethanol to remove the organic components. Then it is lyophilized to get powdered form of nanoparticle and then kept at room temperature for further studies³.

Characterization of silver nanoparticles

UV spectrum analysis: UV-visible spectro photometric analysis was conducted for the synthesised nanoparticles using UV-Visible double beam spectrometer, Kinglab, India with a slit width of 2 nm, using a 10 mm cell at room temperature. The sample was examined under visible and UV light in the wavelength ranging from 200 to 800 nm for proximate analysis¹.

SEM- EDX analysis: The AgNPs were subjected to SEM analysis using a Scanning electron microscopy (VEGA3, TESCAN (Czech Republic)). The energy of the electron beam was kept at 15 keV for both imaging and EDX analysis. The characterisation of elements or chemicals present in the synthesised biogenic AgNPs was determined using energy-dispersive X-ray spectroscopy EDAX (BRUKER, D-12489, Germany)⁶.

XRD: The crystal structure, phase and texture of the synthesised AgNPs were analysed using an PANalytical X'pert3 powder X-ray diffractometer operating at a voltage of 40 kV, a running current of 30 mA with Cu K α radiation²⁹.

FT-IR: Fourier-transformed infrared spectroscopy (JASCO FT/IR-6300, Japan) was used to identify the functional groups present in plants responsible for the reduction of silver iron and stabilisation of synthesised AgNPs. FTIR was measured in the range from 4,400 to 400 cm⁻¹. The spectra (16 scans per spectrum) were collected with a spectral resolution of 16.0 cm⁻¹ with an interval of 2.0 cm⁻¹²⁰.

Cell culture: Primary cultures of immortalised human umbilical vein endothelial cells (HUVEC) were purchased from NCCS, Pune and cultured at 37 °C under 5% CO₂ for 2–3 days in flasks in EGM endothelial cell growth medium (supplemented with 2% Fetal bovine serum, 1 μ g/ml hydrocortisone, 10ng/ml human epidermal growth factor, 3 ng/ml basic fibroblast growth factor, 10 ng/ml VEGF and 10 μ g/ml heparin or 1% endothelial cell growth supplement). Medium without growth factors and 2.5% serum supplement served as endothelial basal medium (EBM). Upon reaching

80% confluence, cells were routinely passaged at a ratio of 1:2. HUVECs between passages 2 and 6 were used in the experiments¹³.

Anti-cancer activity: The assay was carried out by using (3-(4, 5-dimethyl thiazol-2yl) - 2, 5- diphenyl tetrazolium bromide (MTT). Briefly, HUVEC cells trypsinized were seeded in 96 well plate and incubated with medium to allow for the formation of monolayers at 37°C for 48 h. After 48 hours, medium was replaced with low serum medium containing samples (with and without green synthesized AgNPs) in different concentrations for 24 - 48 hours. After treatment, media were removed and wells were added with MTT (5 mg/ml prepared in phosphate-buffered saline) and left for 4 hours at room temperature. Thus, the formazan crystals formed were dissolved in 100 μ l DMSO and absorbance was read in a microplate reader at 570 nm²⁶.

Results and Discussion

(1) Plant extraction and yield percentage: The dried plant powder of *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* were subjected to Soxhlet extraction with water as solvent to extract their bioactive compounds. After Soxhlet extraction, plant extract was dried and yield percentage was calculated. The percentages of extraction yield obtained were 79.97, 79.63, 84.23 and 84.06% in *Cissus quadrangularis*, *Acalypha indica*, *Catharanthus roseus* and *Coleus aromaticus*.

(2) Qualitative analysis: The phytochemical analysis of the plant extracts from *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* demonstrated the presence of several bioactive compounds including saponins, tannins, phenols, flavonoids and steroids in all four species A as given in table 2. The qualitative findings of *C. quadrangularis* were consistent with the findings of Kaur et al¹² except that phenol and saponin were found to be absent. However, in findings of Dharshini⁴, phenol and saponins were detected in aqueous extract of *C. quadrangularis*.

The phytochemical analysis of *A. indica* is like the results obtained by Sahukari et al²⁵ in which ethanolic extract of the plant root were qualitatively estimated. From the phytochemicals detected in *C. roseus*, similar results were observed in study conducted by Jan et al⁷ in which the plant extract before and after exposure to silver nanoparticles was qualitatively estimated.

Table 1
Plant Extraction and Yield Percentage

S.N.	Plant Sample	Initial Wt. (gm)	Final Wt. (gm)	Ext. Yield (%)
1	<i>Acalypha indica</i>	50.345	40.09	79.63
2	<i>Catharanthus roseus</i>	51.84	43.67	84.23
3	<i>Cissus quadrangularis</i>	51.678	41.33	79.97
4	<i>Coleus aromaticus</i>	51.945	43.67	84.06

Table 2
Phytochemical Analysis of the Extracts

S.N.	Phyto-chemical	A. <i>indica</i>	C. <i>roseus</i>	C. <i>quad.</i>	C. <i>arom.</i>
1	Flavanoid	-	-	-	-
2	Alkaloid	-	-	+	-
3	Saponin	++	++	++	++
4	Tannin	++	++	++	++
5	Phenol	++	++	++	++
6	Terpenoid	-	+	+	+
7	Glycoside	-	-	-	-
8	Steroid	+	+	+	+

Table 3
Quantification of Total Phenol and Total Flavonoid contents of the aqueous extracts

Plant Name	Phenol Quant.		Flav. Quant.	
	Abs @ 650nm	GAE (mg/g)	Abs @ 420nm	QCE
<i>A. indica</i>	0.344 ± 0.004	84.11 ± 1.09	1.083 ± 0.003	82.79 ± 1.71
<i>C. roseus</i>	0.696 ± 0.003	170.99 ± 1.69	2.234 ± 0.003	721.83 ± 1.67
<i>C. quad.</i>	0.675 ± 0.003	159.94 ± 1.90	2.677 ± 0.002	968.31 ± 1.39
<i>C. arom.</i>	0.546 ± 0.003	92.26 ± 0.18	2.090 ± 0.003	642.01 ± 1.67

From the phytochemicals obtained in extract of *C. aromaticus*, similar results were observed in study conducted by Sehrawat et al²⁷. These compounds are known for their significant pharmacological properties such as antioxidant, antimicrobial and anti-inflammatory activities. Glycoside were absent in all the plant extract and alkaloids were present in only *C. quadrangularis*.

(3) Quantitative analysis: The total phenol and flavonoid contents of aqueous extracts of *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* were quantitatively estimated by measuring their absorbance at different concentrations. Total phenolic contents in the aqueous extracts of *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* were evaluated by plotting a standard curve using different concentrations of GAE (Gallic acid equivalent) with their respective absorbance at 650 nm.

The linear regression equation is:

$$y = 0.0019x + 0.3711$$

It was used to evaluate the total amount of phenolic contents present in each extract which was expressed as mg of GAE/g.

Aqueous extract of *C. roseus* showed higher phenolic content 170.99 ± 1.69 mg GAE/g of dry plant extract. Then *A. indica*, *C. aromaticus* and *C. quadrangularis* have a phenolic content in the range of 84.11 ± 1.09, 92.26 ± 0.18 and 159.94 ± 1.90mg GAE/g of dry plant extract. The aluminium chloride method was used to determine the total flavonoid content in the aqueous plant extract. The standard curve of different concentration of quercetin (QCE) was plotted to obtain calibration curve to evaluate the total

amount of flavonoid content present in *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* plant extract which was expressed as mg of QCE/g dry plant extract (Table 3). The amounts of flavonoid content in *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* were 968.31±1.39, 82.79±1.71, 721.83±1.67 and 642.01±1.67 mg QCE/g dry plant extract.

UV-visible spectrum analysis: The UV-visible spectrum of the nanoparticles synthesized from *C. quadrangularis*, *A. indica*, *C. roseus* and *C. aromaticus* has major characteristic peaks at 455, 480, 480 and 470nm respectively. The presence of major peaks between 450 and 480 nm confirms the formation of silver nanoparticles synthesized by aqueous extract in the figure 3.

The above has clearly indicated that reducing agents are present in the plant extracts. These results can be verified by comparing UV results of synthesised AgNP from Duraisamy et al⁵ and Vishwajeet et al³¹.

EDAX: The elemental composition of synthesised nanoparticles was analysed by EDAX, the detected elements with their relative weight and atomic percentage were given in table 4. According to the EDX result, the green synthesized AgNPs also produce a strong signal at 3 keV as shown in figure 4 confirming the existence of silver (Ag) and the organic components which are present along with the NPs.

SEM: Surface morphology and topography of the AgNPs were observed by using SEM. Figure 5 depicts that the morphology of the synthesised AgNPs is near to be spherical in shape and in agglomerated condition. The spherical shape of the synthesised nanoparticles coincides with the SEM

analysis of green synthesised AgNPs by Valli et al³⁰ and Sujitha et al²⁸.

XRD: Silver nanoparticles typically exhibit characteristic diffraction peaks corresponding to the face-centred cubic (FCC) structure of metallic silver (Ag), often appearing at $2\theta \approx 38^\circ$, 44° , 64° and 77° , which correspond to the (111), (200), (220) and (311) planes. The plane values and nanoparticles size for nanoparticles synthesized were analysed by XRD.

Figure 4 shows the graphical representation of XRD results obtained. The XRD data confirms the presence of crystalline AgNPs in green synthesised AgNPs and the size of *C. quadrangularis*, *C. aromaticus*, *A. indica* and *C. roseus*

synthesised AgNPs were 12.41, 11.28, 18.79 and 11.22nm respectively.

FTIR: FTIR analysis was carried out for the identification of the possible functional groups in bio molecules, present in the plant extract responsible for the reduction of the silver ion into AgNPs. FTIR spectra of synthesized AgNPs with plant extracts are present in figure 6. FTIR spectrum of AgNPs synthesized with *Cissus quadrangularis*, showed different peaks at 1795, 1918, 2030 and 3583; *A. indica* at 1747, 1996, 2185 and 3610; *C. roseus* at 1799, 1834, 3749 and 3942; *C. aromaticus* at 1800, 2567, 3622 and 3640, these peak values denote the presence of groups C=O, N=C, O=H. These results were like the findings of Duraismay et al⁵ in which *C. quadrangularis* AgNPs were analysed.

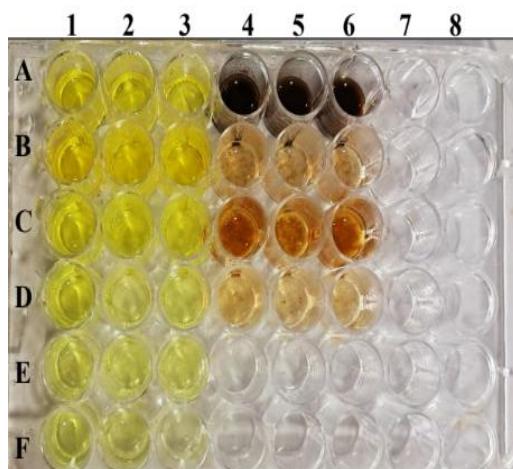
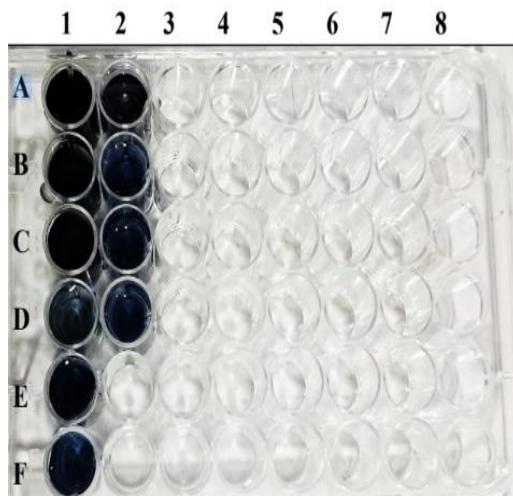
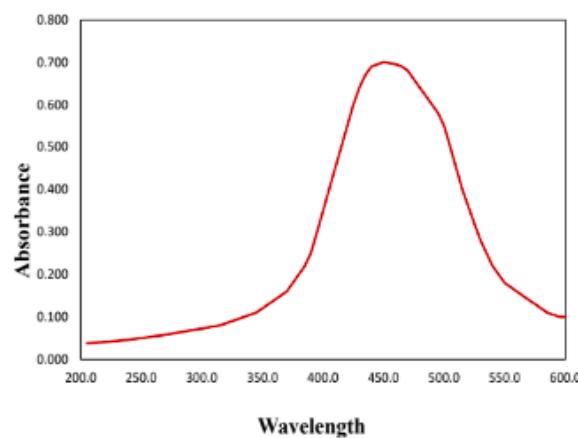


Figure 2.1: Total phenolic contents of the aqueous extracts

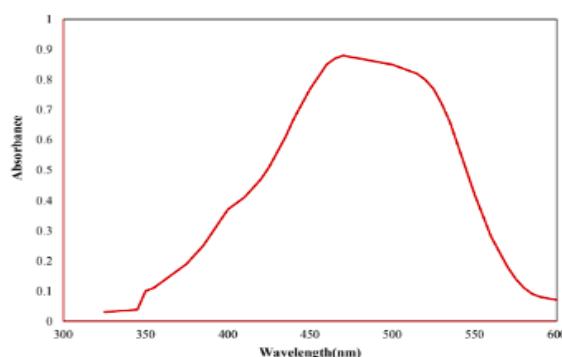
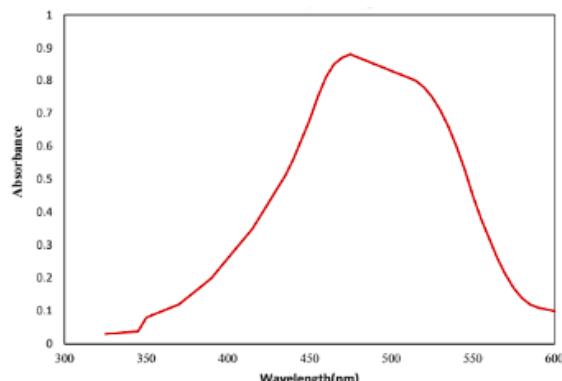

Figure 2.2: Total Flavonoid contents of the aqueous extracts

Table 4
IC50 Value against HUVEC Cell lines


Sample	Concentration ($\mu\text{g/mL}$) IC ₅₀
<i>Coleus aromaticus</i>	41.535
<i>Catharanthus roseus</i>	41.383
<i>Acalypha indica</i>	47.776
<i>Cissus quadrangularis</i>	28.689

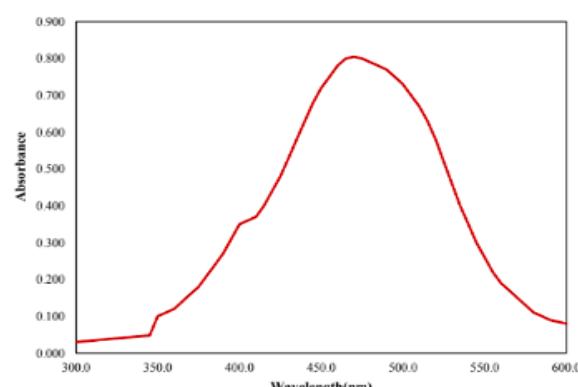

Fig. 3.1: *Cissus quadrangularis* Ag-Uv spectrum

Fig. 3.2: *Acalypha indica* Ag-Uv spectrum

Fig. 3.3: *Catharanthus roseus* Ag-Uv spectrum

Fig. 3.4: *Coleus aromaticus* Ag-Uv spectrum

Figure 3: UV visible spectrum of the nanoparticles using the extracts as follows:

(3.1) *Cissus quadrangularis*, (3.2) *Acalypha indica*, (3.3) *Catharanthus roseus* and (3.4) *Coleus aromaticus*

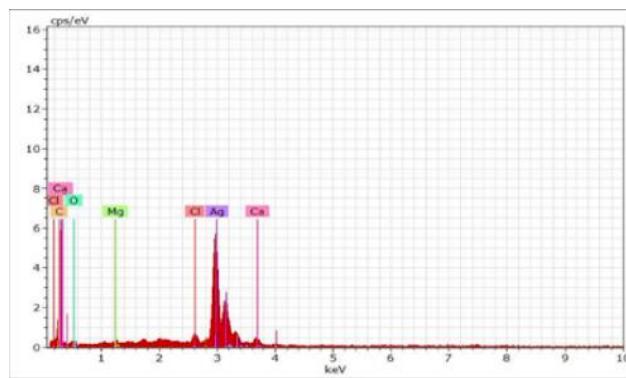
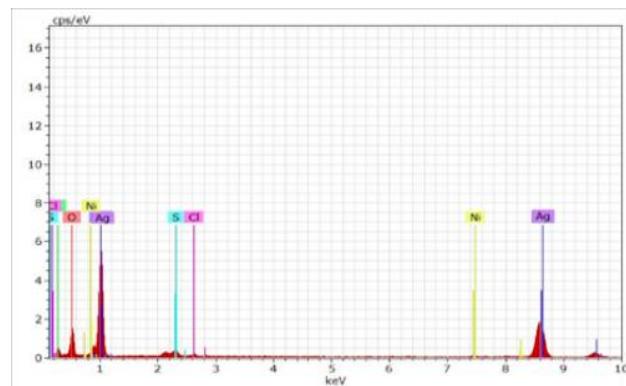
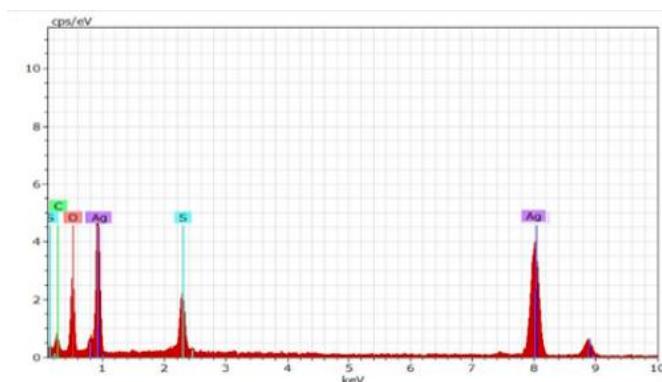
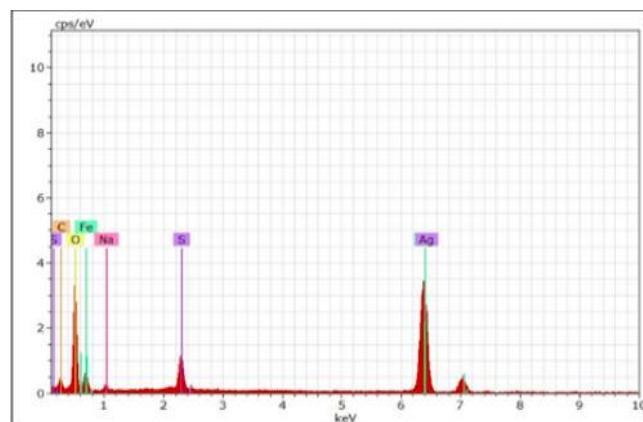




Fig. 4.1: *Cissus quadrangularis*Fig. 4.2: *Acalypha indica*Fig. 4.3: *Catharanthus roseus*Fig. 4.4: *Coleus aromaticus*

Figure 4: Analysis of Elemental Composition of the synthesised nanoparticles by EDAX of the extracts as follows: (4.1) *Cissus quadrangularis*, (4.2) *Acalypha indica*, (4.3) *Catharanthus roseus* and (4.4) *Coleus aromaticus*

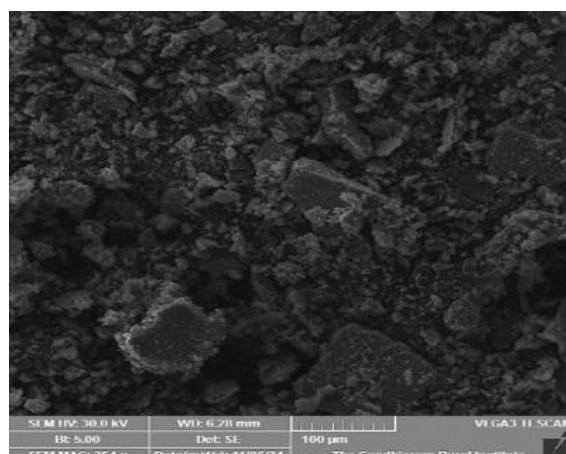


Fig. 5.1: *Cissus quadrangularis* – SEM analysis

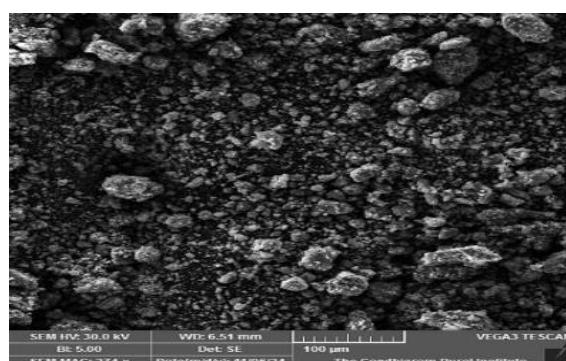


Fig. 5.2: *Acalypha indica* – SEM analysis

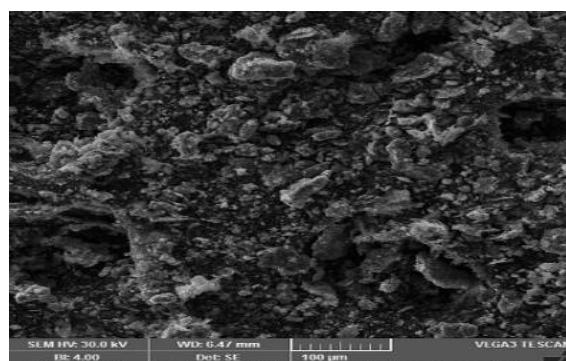


Fig. 5.3: *Catharanthus roseus* – SEM analysis

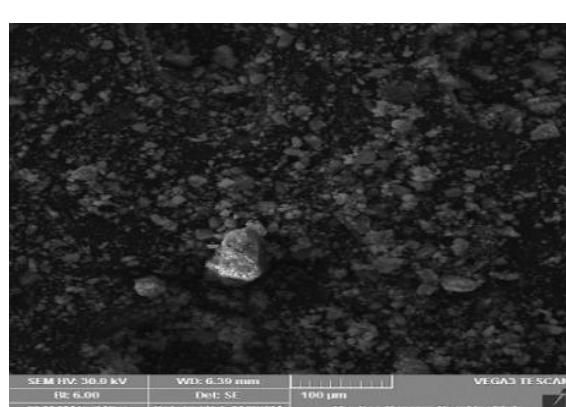
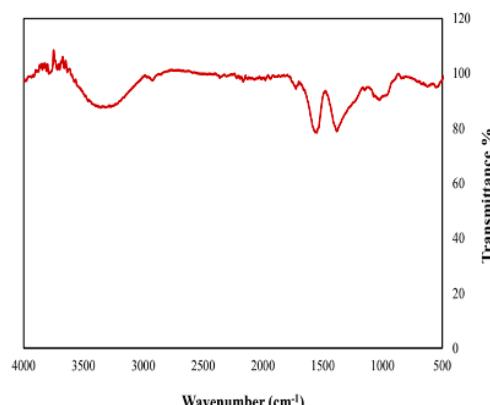
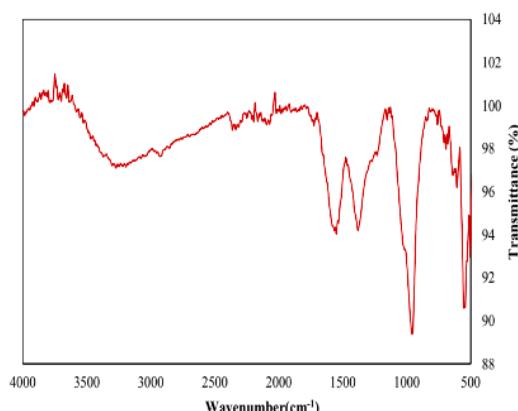
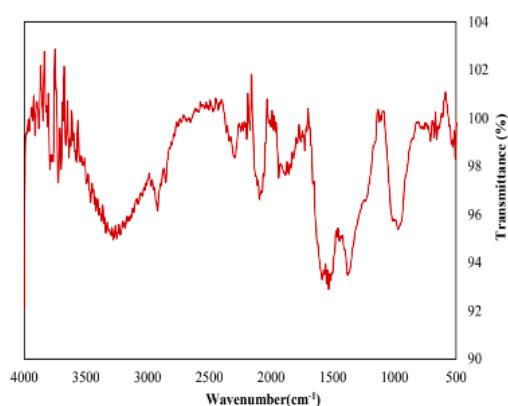




Fig. 5.4: *Cissus quadrangularis* – SEM analysis


Figure 5: Surface Morphology and Topography of the AgNPs using SEM of the extracts as follows: (5.1) *Cissus quadrangularis*, (5.2) *Acalypha indica*, (5.3) *Catharanthus roseus* and (5.4) *Coleus aromaticus*

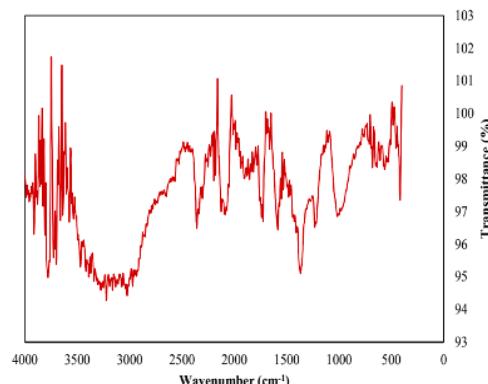

Fig. 6.1: *Cissus quadrangularis* Ag-FTIR

Fig. 6.2: *Acalypha indica* Ag-FTIR

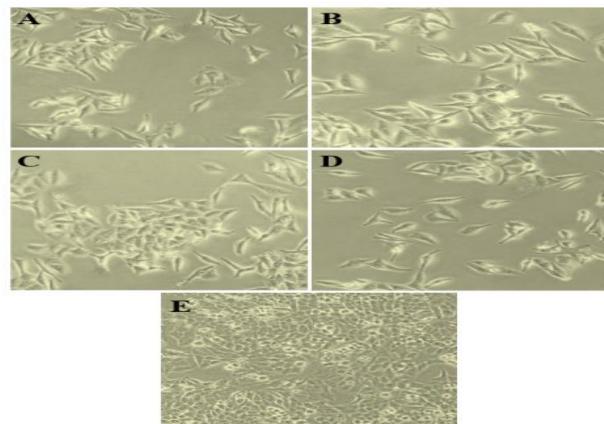


Fig. 6.3: *Catharanthus roseus* Ag-FTIR

Fig. 6.4: *Coleus aromaticus* Ag-FTIR

Figure 6: FTIR Analysis of the synthesised AgNPs of the extracts as follows:
(6.1) *Cissus quadrangularis*, (6.2) *Acalypha indica* (6.3) *Catharanthus roseus* and (6.4) *Coleus aromaticus*

Figure 7: HUVEC Cells treated with the nanoparticles using the plant extract
A. Coleus aromaticus, B. Acalypha indica, C. Catharanthus roseus, D. Cissus quadrangularis and E. Control-untreated cells

Anti-cancer activity: The cytotoxicity test results of nanoparticles green synthesised with the extracts of plants using MTT assay as IC₅₀ scores are presented in table 4. Figure 7 represents HUVEC cell treated with nanoparticles. The cytotoxicity test results using MTT assay were measured with IC₅₀ scores. The IC₅₀ score of 47.776 µg/mL was observed in *Acalypha indica* and 28.689 µg/mL IC₅₀ value was observed in *Cissus quadrangularis*. *Catharanthus roseus* and *Coleus aromaticus* showed IC₅₀ of 41.383 and 41.535 µg/ml respectively. This clearly shows that *Cissus quadrangularis* AgNPs have better cytotoxic activity against immortalised HUVEC cells proving its anticancer effect. Since anti-angiogenesis is inhibition of angiogenesis of endothelial cells, the cytotoxic effect by AgNP synthesised from extract of *Cissus quadrangularis* can prove it to be of anti-angiogenic property⁹.

Conclusion

Green synthesized silver nanoparticles are considered safer and have excellent cytotoxic effects against cancerous cell lines. The green synthesized AgNPs were tested for their stability, size and possible functional groups, which resulted in consistent findings in the results. AgNPs synthesized with *Cissus quadrangularis*, *Catharanthus roseus*, *Acalypha indica* and *Coleus aromaticus*, all showed cytotoxic activity on immortalised HUVEC cell line. However, the *Cissus quadrangularis* AgNPs showed greater cytotoxicity against the cell line.

Therefore, it is concluded that silver nanoparticles synthesized with *Cissus quadrangularis* possessed excellent anti-cancer activity. The future direction of the study will be assessing the potential of green synthesized AgNPs as drug carriers and their anti-angiogenic activity.

References

1. Abel S. et al, Green synthesis and characterizations of zinc oxide (ZnO) nanoparticles using aqueous leaf extracts of coffee (*Coffea arabica*) and its application in environmental toxicity reduction, *J Nanomater*, **2021**, 1-6 (2021)
2. Advanced Concept of Green Synthesis, 17-36 (2018)
3. Dawadi S. et al, Current Research on Silver Nanoparticles: Synthesis, Characterization and Applications, *J Nanomater*, **6**, 1-28 (2021)
4. Dharshini M., A Comparative Pharmacognostical and Phytochemical Evaluation of Two *Cissus quadrangularis* L. Diss. (2023)
5. Duraisamy R., Arizo A. and Yilma B., Antibacterial and Antioxidant Activity of Plant-Mediated Green Synthesized Silver Nanoparticles Using *Cissus quadrangularis* Aqueous Extract, *Bull Chem Soc Ethiop*, **39**, 1749708698 (2025)
6. Golthi V. and Kommu J., An eco-friendly and sustainable method for producing Fe₃O₄ nanoparticles using *Jatropha podagrica* leaf extract for efficient dye degradation and antibacterial uses, *Hybrid Adv*, **4(8)**, 100110 (2023)
7. Jan M.W. and Naskar J., Assessment of phytochemical enhancement in *Catharanthus roseus* by silver nanoparticle, *Pharma Innov*, **10(2)**, 483-486 (2021)
8. Jasim L.M.M., Tabrizi M.H., Darabi E. and Jaseem M.M.M., The antioxidant, anti-angiogenic and anticancer impact of chitosan-coated herniarin-graphene oxide nanoparticles (CHG-NPs), *Heliyon*, **9(9)**, e20042 (2023)
9. Kaya-Tilki E., Öztürk A.A., Engür-Öztürk S. and Dikmen M., Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells, *Sci Rep*, **14(1)**, 19837 (2024)
10. Khanal S., Qualitative and Quantitative Phytochemical Screening of *Azadirachta indica* Juss. Plant Parts, *Int J Appl Sci Biotechnol*, **9(2)**, 122-127 (2021)
11. Kitimu S.R. et al, Anti-Angiogenic and Anti-Metastatic Effects of Biogenic Silver Nanoparticles Synthesized Using *Azadirachta indica*, *Adv Biosci Biotechnol*, **13**, 188-206 (2022)
12. Kaur J. et al, LC/MS guided identification of metabolites of different extracts of *Cissus quadrangularis*, *Food Chem Adv*, **1**, 1-11 (2022)

13. Kunitatsu R. et al, Effects of Human Deciduous Dental Pulp-Derived Mesenchymal Stem Cell-Derived Conditioned Medium on the Metabolism of HUVECs, Osteoblasts and BMSCs, *Cells*, **11(20)**, 3222 (2022)

14. Liu Z.L., Chen H.H., Zheng L.L., Sun L.P. and Shi L., Angiogenic signaling pathways and anti-angiogenic therapy for cancer, *Signal Transduct Target Ther*, **8**, 198 (2023)

15. Lopes-Coelho F., Martins F., Pereira S.A. and Serpa J., Anti-angiogenic therapy: Current challenges and future perspectives, *Int J Mol Sci*, **22**, doi: 10.3390/IJMS22073765 (2021)

16. Majnooni M.B. et al, Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways, *Metabo*, **13**, 323 (2023)

17. Mittal A.K., Chisti Y. and Banerjee U.C., Synthesis of metallic nanoparticles using plant extracts, *Biotechnol Adv.*, **31(2)**, 346-356 (2013)

18. Mittal J., Batra A., Singh A. and Sharma M.M., Phytofabrication of nanoparticles through plant as nanofactories, *Adv Nat Sci: Nanosci Nanotechnol*, **5**, Doi: 10.1088/issn.2043-6262 (2014)

19. Mudau H.S., Mokoboki H.K., Ravuhuhali K.E. and Mkhize Z., Effect of Soil Type: Qualitative and Quantitative Analysis of Phytochemicals in Some Browse Species Leaves Found in Savannah Biome of South Africa, *Molecules*, **27(5)**, 1462 (2022)

20. Naveed M. et al, Green Synthesis of Silver Nanoparticles Using the Plant Extract of *Acer oblongifolium* and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches, *Molecules*, **27(13)**, 4226 (2022)

21. Oguntade A.S., Al-Amadi F., Alrumayh A., Alobaida M. and Bwalya M., Anti-angiogenesis in cancer therapeutics: the magic bullet, *J. Egypt. Natl. Cancer Inst.*, **33**, 15 (2021)

22. Patel R.M., Patel D.M., Shah K.P. and Patel D.A., Synthesis of Polyketones and their Antimicrobial Study, *Res J Chem. Environ.*, **3**, 47 (1999)

23. Peralta-Videa J.R. et al, Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis, *Nanotechnol Environ Eng*, **1**, https://doi.org/10.1007/s41204-016-0004-5 (2016)

24. Rajkumar G., Panambara P.A.H.R. and Sanmugarajah V., Comparative Analysis of Qualitative and Quantitative Phytochemical Evaluation of Selected Leaves of Medicinal Plants in Jaffna, Sri Lanka, *Borneo J Pharm*, **5(2)**, 93-103 (2022)

25. Sahukari R. et al, Phytochemical profile, free radical scavenging and anti-inflammatory properties of *Acalypha Indica* root extract: Evidence from *in vitro* and *in vivo* studies, *Molecules*, **26(20)**, 6251 (2021)

26. Sarani M. et al, Study of *in vitro* cytotoxic performance of biosynthesized α -Bi₂O₃NPs, Mn-doped and Zn-doped Bi₂O₃NPs against MCF-7 and HUVEC cell lines, *J Mater Res Technol*, **19**, 140-150 (2022)

27. Sehrawat S., Singh B., Baba S. and Nath M., Preliminary Pharmacognostic studies and Chromatographic fingerprinting of *Coleus aromaticus*, *EAS J Pharm Pharmacol.*, **3(6)**, 150-155 (2021)

28. Sujitha V. et al, Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector *Aedes aegypti*, *Parasitol Res*, **114**, 3315-3325 (2015)

29. Thakar M.A. et al, X-ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of *Cissus vitiginea*, *Mater Today Proc.*, **51(1)**, 319-324 (2021)

30. Valli J.S. and Vaseeharan B., Biosynthesis of silver nanoparticles by *Cissus quadrangularis* extracts, *Mater Lett*, **82**, 171-173 (2012)

31. Vishwajeet S., Ankita S. and Nitin W., Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX, *Afr J Biotechnol*, **14 (33)**, 2554-2567 (2015)

32. Zhou J., Wang L., Peng C. and Peng F., Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology, *Front Pharmacol.*, doi: 10.3389/fphar.2022.886198 (2022).

(Received 27th April 2025, accepted 29th May 2025)